St Monica Rocketry Club

47 Woodchuck Lane

Ridgefield, Connecticut 06877

(203) 438-2645

Preliminary Design Review

2018 NASA Student Launch

November 3, 2017

ACR	DNYM DICTIONARY	4
Ι.	SUMMARY OF PDR	5
Α.	TEAM SUMMARY	5
В.	LAUNCH VEHICLE SUMMARY	5
	1. Size and Mass:	5
	2. Motor Choice	5
	3. Recovery System	5
C.	Payload Title	5
	Survival to Mars	5
II.	CHANGES MADE SINCE PROPOSAL	6
Α.	Changes Made to Vehicle Criteria.	6
В.	Changes Made to Payload Criteria	6
C.	Changes Made to Project Plan	6
ш.	VEHICLE CRITERIA	7
 А.	Launch Vehicle	7
	1. Mission	7
	2. Airframe Materials Alternative	7
	3. Fin Material and Shape Alternatives	9
	4. Other Components	.11
	5. Leading Design	.11
	6. Motor Alternatives- We evaluated the following motors	.15
В.	Recovery System	.17
	1. Electronics Alternatives	.17
	2. Parachutes Alternatives	.18
	3. Other Components	.20
C.	Mission Performance Predictions –	.21
	1. Flight Simulations – See Section III.A.5 above	.21
	2. Stability Margins- See Section III.A.4 above	.21
	3. Kinetic Energy at Landing	.21
	4. Drift Calculations	.21
IV.	SAFETY	.21
A.	Personnel Hazard Analysis	.21
В.	Failure Modes and Effects Analysis	.24
C.	Project Risks	.26
۷.	PAYLOAD CRITERIA	.26
A.	SCIENTIFIC EXPERIMENT	.26
В.	Why Shrimp	.27
C.	COOLING SYSTEM	.29

TABLE OF CONTENTS

D.	Payload System Design
VI.	PROJECT PLAN
Α.	REQUIREMENTS VERIFICATION
1.	Handbook Criteria
	General Requirements
	Design Requirements
	Recovery Requirements
	Experiment Requirements
2.	Team Specific Criteria
В.	BUDGETING AND TIMELINE
1.	Budget
	Summary
	Huntsville Trip
	Full Scale Rocket and Payload Expense
	Fundraising
2.	Timeline –
C.	EDUCATIONAL ENGAGEMENT
D.	COMMUNITY OUTREACH
VII.	APPENDIX
Α.	TABLE OF FIGURES
В.	TABLE OF TABLES

Acronym Dictionary

- AGL = Above Ground Level
- APCP = Ammonium Perchlorate Composite Propellant
- CDR = Critical Design Review
- CG = Center of Gravity
- CP = Center of Pressure
- EIT = Electronics and Information Technology
- FAA = Federal Aviation Administration
- FN = Foreign National
- FPS = Feet Per Second
- FRR = Flight Readiness Review
- HEO = Human Exploration and Operations
- LCO = Launch Control Officer
- LRR = Launch Readiness Review
- MSDS = Material Safety Data Sheet
- MSFC = Marshall Space Flight Center
- NAR = National Association of Rocketry
- PDR = Preliminary Design Review
- PLAR = Post Launch Assessment Review
- PPE = Personal Protective Equipment
- RFP = Request for Proposal
- RSO = Range Safety Officer
- SLI = Student Launch Initiative
- SME = Subject Matter Expert
- SOW = Statement of Work
- STEM = Science, Technology, Engineering, and Mathematics
- TRA = Tripoli Rocketry Association

I. Summary of PDR

A. Team Summary

St Monica Rocketry Club 47 Woodchuck Lane Ridgefield, CT 06877

NAR Mentor:

Don Daniels mad4hws_ii@yahoo.com Home (203) 438-2645 Cell (203) 731-1867

B. Launch Vehicle Summary

1. Size and Mass:

The rocket will have an outer diameter of 4.0 inches and has a projected mass of 19.8lbs. The total length of the rocket will be 90.25 inches from the tip of the nose cone to the end of the tailcone. The rocket's center of gravity with a fully loaded motor is located 50.44 inches from the tip of the nose cone. The center of pressure is located 63.43 inches from the tip of the nose cone. The combination of the center of pressure and gravity produce a stability margin of approximately 3.25.

2. Motor Choice

Based on these simulations and considerations, it was determined that a Cesaroni K1200 will best satisfy the requirements; however, there several motor choices available.

3. Recovery System

The recovery system utilizes a dual deployment system. At apogee, the rocket will separate into two pieces, tethered together by a shock cord and a 2 foot Rocketman ballistic parachute will deployed. At approximately 600 feet, another separation event will occur, which will deploy the main parachute, a 10' Fruity Chutes Iris Compact parachute. This parachute will slow the decent enough so that the live shrimp payload is not harmed.

C. Payload Title

Survival to Mars

It takes seven years to get to Mars and a difficulty is feeding the astronauts fresh food during their journey. The Payload Experiment seeks to answer if shrimp would be able to survive the G-Forces encountered during rocket launch. The shrimp we are using

are primarily used to feed other fish and creatures. This knowledge could then be applied to larger shrimp that people eat, astronauts could filter out the brine shrimp and eat them for protein or they can be used to feed other food sources being raised on-board during the journey to Mars.

II. Changes made since Proposal

A. Changes Made to Vehicle Criteria.

Our design originally was going to be made of fiberglass, because of the strength. Fiberglass turns out to be too heavy for us to make the desired altitude of 5,280 feet because of the increased weight requirements of our payload. Our new design consists of a body tube made out of BlueTube which is lighter and slightly weaker. Our new design has the fins made out of aircraft plywood with a layer of carbon fiber which reduces weight and increases strength.

The nosecone was changed to a plastic nose cone which is less expensive, lighter and slightly less durable.

The design originally called for a main a parachute that was heavy and space inefficient. Our new chute is a Fruity Chutes Iris Compact which is lighter, more compact and more effective. The only down side is their cost, which is almost 4 times as expensive as our original Rocketman parachute. We can afford this due to the savings on the body tube, nose cone and fins.

B. Changes Made to Payload Criteria

Through testing, we determined that we definitely need a cooling system for our delicate shrimp payload. The prototype cooling system added an additional 2 pounds to the mass of the rocket.

C. Changes Made to Project Plan

The name was altered to be uniform with the registered name which is St Monica Rocketry Club. The budget was altered due to the changing of materials in the design. We saved on the body tube, nosecone and fins. This savings was offset by the expense of the parachutes.

Our funding changed in that we could not do the photo shoot because of complications. NY Space Grant quoted a low funding figure, and instead they granted our team the maximum allowed Grant of \$2,000. Prime in Ridgefield is sponsoring us for \$2,000.

III. Vehicle Criteria

A. Launch Vehicle

1. Mission

We will make a reusable launch vehicle that will achieve an altitude of 5,280ft, deploy a drogue chute at apogee, and a main chute at a lower altitude (600ft). We will have two flight computers on-board the rocket, one of which will have a GPS tracking system, recording flight status. The launch vehicle will use a motor with sufficient thrust to leave the launch rail at a safe exit speed.

The success of the launch vehicle will be evaluated by the following: Having a safe flight, deploying both chutes at the required altitudes. After the rocket has safely landed, we will conduct a visual analysis to determine if the vehicle has sustained any damages during the flight.

2. Airframe Materials Alternative

Below are the materials for consideration, details on their cost, and their ranking compared to the other materials (1 being the least favorable, 6 being the most favorable).

							Machinability	
Material	\$/ft.	oz./ft.	Company	\$ Ranking	Oz. Ranking	Strength Ranking	Ranking	Total Ranking
Cardboard (11021)	4.06	3.71	Apogee	6	4	1	6	17
Bluetube (10505)	9.74	6.39	Apogee	4	4	4	5	17
Fiberglass (10607)	26.25	11.86	Apogee	2	1	5	1	9
Carbon Fiber (CFAF-3.9-UL-60)	47.99	4.90	Public Missiles	1	6	6	2	15
Phenolic (PT-3.9)	6.99	5.10	Public Missiles	4	4	2	3	14
Quantum (QT- 3.9)	8.65	6.00	Public Missiles	4	4	3	4	15

Table 1-Air Frame Materials

When constructing a machine that goes over one mile into the air, you must take caution when choosing the material of the tube. Not only will this material have to sustain much heat, it will carry a fragile payload.

Cardboard tubing is low-priced, lightweight, and easy to work with, but is easily damaged by impact and water. The details listed above describe the 4" cardboard tubing manufactured by LOC Precision.

BlueTube is low-priced, strong, and easy to work with. It is a similar material to phenolic and is similarly heavy, but is not as brittle—meaning that it does not crack under stress. The details listed above describe the 4" BlueTube manufactured by Always Ready Rocketry.

Fiberglass tubing is strong and waterproof, but expensive, difficult to work with, and the heaviest of the options. The details listed above describe the 4" fiberglass tubing manufactured by ProLine Composites.

Carbon fiber tubing also is strong, waterproof, and lightweight, but expensive and difficult to work with. The details listed above describe the 4" carbon fiber tubing distributed by Public Missiles LTD.

Phenolic tubing is low-priced, lightweight, and fairly strong, but it is brittle, and could crack under hard impact or stress. The details listed above describe the 4" phenolic tubing distributed by Public Missiles LTD.

Quantum tubing is a material similar to PVC. It is low-priced, similar in weight to BlueTube and phenolic, and easy to work with, but is not the strongest of the options. The details listed above describe the 4" quantum tubing distributed by Public Missiles LTD.

The team initially chose to have a fiberglass airframe based on its durability and strength. However, a lighter material is needed because the payload design will be heavier than initially expected. When taking the entire rocket into consideration, three pounds will be saved by using BlueTube instead of fiberglass. Although carbon fiber is lighter than BlueTube, it is the most expensive of all the materials. If the weight of the payload increases further, the team may need to use a carbon fiber airframe; however, right now the costs do not justify it and there are many other K-class motors that will support the extra weight in order to achieve the 5,280 feet target altitude. Based on the chart above, the team decided to use BlueTube, which had a final ranking of 17, for the airframe of the rocket.

Material	Weight	\$ Ranking out of	Strength	Ease of
		5		Construction
Carbon Fiber	Light	5	Extremely	Easy
			Strong	
Balsa Wood	Light	2	Weak	Easy
Fiberglass	Heavy	3	Strong	Medium
Aircraft	Light	3	Strong	Easy
Plywood				
Basswood	Light	4	Strong	Easy
Carbon Fiber	Very Light	3	Very Strong	Hard
End Grain Balsa				
Core				
Fiberglass End	Light	2	Strong	Hard
Grain Balsa				
Core				
Carbon Fiber	Very Light	3	Very Strong	Hard
Balsa Core				
Fiberglass Balsa	Light	2	Strong	Hard
Core				
3D Print	Light-Medium	2	Medium	Medium

Table 2 - Fin Material and Shape Alternatives

3. Fin Material and Shape Alternatives

These are the fin materials which we evaluated:

- Carbon Fiber is light and very strong but is expensive.
- Balsa Wood is strong as a core material but weak by itself.
- Fiberglass which is not too expensive is still strong but the heaviest material. The weight may be prohibitive because of our payload requirements.
- Aircraft Plywood is light, is a medium expense, and is strong. some differences between plywood and aircraft plywood is aircraft plywood is made with better glues and has to be able to withstand sitting in boiling water for 3 hours.
- Basswood is also light, is stronger than Aircraft Plywood, but is more expensive. It is, more prone to breaking though.
- Carbon Fiber End Grain Balsa Core is very strong and extremely light but expensive.
- Fiberglass End Grain Balsa Core is strong and light but a medium expense.

- Carbon Fiber Balsa Core is extremely light, medium expense, and very strong.
- Fiberglass Balsa Core is a medium weight, low expense, and strong.
- 3D printing could be from light to medium weight, low to medium cost and medium strength.

When using core materials if the material is the same thickness as the original, the strength will be the same but much lighter. But, when using core material, it takes much longer to manufacture. We decided to use aircraft plywood because it is relatively inexpensive and easy to manufacture.

We also evaluated several different fin shapes, some of which were:

Figure 1-Fins Source: Handbook of Model Rocketry, 7th Edition Model Rocketry

- The Shape with the least drag is the elliptical (not shown). Although elliptical fins create less drag than the others, they are difficult make.
- The delta has a triangular shape so a bent tip is more likely when landing.
- Swept delta is like the delta but leaning back more, creating less drag than the regular delta. Still, the tip is prone to breaking.
- Rectangular fins are easy to make but are less aerodynamic.
- Swept fins, which angle either backwards or forwards, cause less drag then rectangular fins.

• Tapered Swept fins are thinner than Swept fins; thus, they are more aerodynamic.

Our leading design is the trapezoidal fin as we didn't see a significant difference between fin shapes, other than the elliptical which would have created more issues with making than any of the other designs.

4. Other Components

Nose Cones:

With BlueTube as our airframe material, selecting fiberglass for the nose cone would add weigh unnecessarily and potentially cause stability issues with this weight being at the end of the rocket. Carbon fiber is too expensive and will take too long to make. Balsa is also impractical as it would have to be manufactured and is not highly durable. Reviewing our options, we determined that using plastic for the nose cone was the best alternative because plastic is light weight and it is sufficiently durable since the rocket is not going to be flying fast for a long enough period of time to cause it to melt or catch on fire.

The rocket nose cone that we selected is the parabolic plastic nose cone from LOC Precision. We picked this nose cone because it was the most aerodynamic of the three that we assessed (the other two being a 5:1 Von Karman from Giant Leap Rocketry and an 8" nose cone from MadCow Rocketry). It is 12 inches in length, long enough to fit the flight computer if we determine that is necessary.

5. Leading Design

The diagram below reflects our current design.

Figure 2 - Leading Design

We initially based the design of our rocket upon the Wildman Extreme 4" diameter rocket kit from Wildman Hobbies. However, we decided to switch from fiberglass to BlueTube to accommodate the mass of the payload. There are 8" couplers placed between all body tubes.

Payload: The foremost section will consist of a 12.75" plastic nosecone and a 14" body tube. The body tube will contain a scientific payload.

Forward Recovery: The second section consists of a 22" body tube, which will contain the main parachute: The Fruity Chutes 10' Iris Ultra Compact.

Aft Recovery: The aft recover is a 17" long body tube, which will contain the drogue parachute: the Rocketman 2' Ballistic Parachute.

Propulsion: The propulsion section contains a 22" body tube and a 2.5" tailcone. The tailcone is manufactured by Aeropack from machined aluminum, this tailcone also serves as the motor retainer for our 22" 54 mm. motor tube.

All four of these sections will come down in two parts; the payload and fwd. recovery will be screwed together as will the aft recovery and propulsion. The coupler that will be joining these two parts together will act as the electronics bay, containing all of the electronics for the rocket. These three pieces will all be joined together by 3/8" tubular Kevlar.

The components and masses for each section are reflected in this table:

FULL SCALE ROCKET AND PAYI	LOAD COMPO				
				Mass (grams)	
Totals				7,968.13	
Lookun Description	Unit Mass	Unit	Quantity	Total Mass	Comment
ROOSTER	Cint Mass		Quantity	1012111235	Comment
3 9" BlueTube Airframe	15.10	g/in	22	332.20	Booster, Exterior Body Tube
Tailcone 390 to 54mm	115.00	σ	1	115.00	Booster, Exterior Body Fube
2 1" BlueTube Airframe	8 54	σ∕in	22	187.92	54mm motor mount
Centering Ring 3.9" to 2.1"	25.89	σ	3	77.68	centering rings for motor mount
	20.07	8	5	11.00	2 threaded rod stiffeners to go through
1/4-20 stainless threaded rod	4.58	g/in	48	220.00	centering rings
1/4.20	17.50		2	25.15	
1/4-20 eye nut	17.58	g	2	35.15	eye nuts to attach booster to aft recovery
1/4-20 Hex Nut	3.22	g	2	6.45	
1/4" Split Lock Washer	1.00	g	4	4.00	
1/4" Washer	1.40	g	4	5.60	
1515 rail button- pair (large)	15.00	g	150	15.00	
1/4" Aircraft Plywood	1.57	g	150	235.94	Fins
Paint & Glue				200.00	
				1,435.03	
I OWER RECOVERV					
3 9" BlueTube Airframe	15.10	g / in	17	256.77	
Rocketman drogue balistick 2 feet	166.80	87 m	1	166.80	
Rockethan drogae banstick 2 feet	100.00		1	100.00	Counler between booster and aft
3.9" BlueTube Coupler	15.00	g/in	8	120.00	recovery
18x18 nomax	39.80		1	39.80	
Harness: 3/16" tubular kevlar - 25 ft					
long, 3 loop	138.10		1	138.10	
3/16" Quik Link	21.40	g	4	85.60	2 attach to booster, 2 attach to e-bay
Paint & Glue				100.00	
				907.07	
ELECTRONICS BAY					
Stratologger CF Altimeter	10.21	g	1	10.21	
TRS Altimeter/Tracker	40.00	g	1	40.00	
Wiring	14.46	g	2	28.92	
Screw Switch	3.69	g	2	7.37	
Charge Holder (3.0g) - pair	26.60	g	2	53.20	
1/4-20 stainless threaded rod	4.58	g/in	22	100.83	2 pieces that extend through ebay
1/4-20 eye nut	17.58	g	4	70.31	2 on each end of ebay
1/4-20 Hex Nut - aluminum	1.00	g	8	8.00	for interior of ebay to secure sled
1/4" Split Lock Washer	1.00	g	4	4.00	
1/4" Washer	1.40	g	4	5.60	
1/8" G10 Fiberglass Sheet	3.90	g / in^2	28	109.27	8 x 3.5 ebay sled

Lookup Description	Unit Mass	Unit	Quantity	Total Mass	Comment
					2 required for Eggtimer and 1 for
Turnigy 500mah 2s	58.00	g	3	174.00	Stratologger
3.9" Airframe Bulkhead	38.46	g	2	76.92	
3.9" Coupler Bulkhead	36.15	g	2	72.29	
3.9" BlueTube Coupler	15.00	g/in	9	135.00	
Paint & Glue				100.00	
				995.92	
FORWARD RECOVERY					
3.9" BlueTube Airframe	15.10	g/in	22	332.29	
FruityChute Iris Ultra compact 120	627.00	0	1	627.00	
4" Deployment bag - 9" long	100.00	0	1	100.00	
Harness: 1/2" Flat kevlar - 25 ft long,					
2 loop	188.00	0	2	376.00	
3/16" Quik Link	21.40	g	4	85.60	2 to attach to ebay and 2 to payload
Paint & Glue				100.00	
				1,620.89	
PAYLOAD					
3.9" BlueTube Airframe	15.10	g/in	14	211.46	
3.9" Nose Cone - 12.75"	200.00	g	1	200.00	LOC precision
3.9" BlueTube Coupler	15.00	g/in	8	120.00	Fwd recovery to Payload
3.9" Airframe Bulkhead	38.46	g	1	38.46	
3.9" Coupler Bulkhead	36.15	g	1	36.15	
1/4-20 eye nut	17.58	g	2	35.15	
Payload Adruino Parts	2,268.00	0	1	2,268.00	This is just a placeholder
Paint & Glue				100.00	
				3,009.22	

Table 3 - Full Scale Rocket and Payload Component Listing

Simulation conditions/criteria						
Rocket mass- pre motor	7,950					
Rail length in.	144					
Temperature (F.)	75					
Humidity (%)	75					
Wind (mph)	5					
Cloud coverage (%)	50					
Airframe finish	polished					

6.	Motor	Alternatives-	We evaluated	the	following	g motors
υ.	1010101	1 Mici nati v co-	we evaluated	une	10110 wille	5 motor

Motor	Total thrust (N.)	Burn time (sec)	Max. Alt. (ft)	Rail exit velocity (ft/sec)	Max velocity (ft/sec)
Cesaroni K-490-green	1,978	4.1	5,000	62	552
Cesaroni K-650-pink	1,997	3.1	5,291	76	590
Cesaroni K-1200	2,014	1.7	5,592	100	656
Cesaroni K-780	2,108	2.7	5,915	82	651
Aerotech K-828	2,120	2.5	5,789	87	646
Aerotech K-1275	2,225	1.8	5,885	106	670
Aerotech K-702	2,261	3.5	6,426	85	660
Aerotech K-1050	2,426	2.1	7,458	97	767

Table 4 - Motor Alternatives

We eliminated the following motors; the Cesaroni K-490-green because it did not reach the target altitude of 5,280 feet; and the Aerotech K-702 and K-1050 because they exceeded the target by too large of a margin.

The chart below reflects the thrust curves for the remaining motors.

Figure 3 - Thrust Curve Comparison

We also modified several parameters of the simulation to see how each of these motors performed. We increased the mass by 600 g, we reduced the temperature from 75 degrees to 55 degrees, we reduced the cloud cover from 50% to 0%, we changed the finish from polished to gloss and matt, and we simulated different wind speeds. The results of the simulation are shown below.

	10 kg. rocket		0% cloud						
Motor	mass	55 F. Temp.	coverage	Matt finish	Gloss finish	0 mph wind	10 mph wind	15 mph wind	20 mph wind
Cesaroni K-650-pink	4,842 ft.	5,254 ft.	5,291 ft.	5108 ft.	5,232 ft.	5,304 ft.	5,250 ft.	5,181 ft.	5,084 ft.
Caeseroni K-1200	5,146 ft.	5,549 ft.	5,592 ft.	5,369 ft.	5,510 ft.	5,598 ft.	5,573 ft.	5,541 ft.	5,494 ft.
Cesaroni K-780	5,439 ft.	5,869 ft.	5,415 ft.	5,676 ft.	5,827 ft.	5,927 ft.	5,878 ft.	5,815 ft.	5,727 ft.
Aerotech K-828	5,337 ft.	5,746 ft.	5,789 ft.	5,653 ft.	5,707 ft.	5,799 ft.	5,759 ft.	5,709 ft.	5,637 ft.
Aerotech K-1275	5,434 ft.	5,829 ft.	5,885 ft.	5,641 ft.	5,793 ft.	5,890 ft.	5,868 ft.	5,838 ft.	5,796 ft.

Table 5 - Motor Simulations

After considering all of the factors we have several different viable motor choices, with our leading candidate being the Cesaroni K-1200.

B. Recovery System

1. Electronics Alternatives

We have viewed many of the options for commercially available altimeters. From the vast amount of options, we have decided to narrow down the options to having at least two pyro control outputs, the ability to record up to 10,000 feet, and flight memory. With these expectations narrowing down the choices, there are much less to choose from. Some manufacturers are: Eggtimer, Adept, Altus Metrum, and PerfectFlite. Some of the options we have eliminated because of unreasonable price with vast amounts of storage that we just do not need. Some were taken out because they are not allowed to be used in the SLI. Such as some altimeter that did not contain pyro output controls or flight memory.

Altimeters	Manufacturer	Flight Memory	Pyro Outputs	max. alt.	price
Quark (DIY)	Eggtimer	1	2	30,000 ft.	\$ 20.00
ADEPT22	Adept	1	2	25,000 ft.	\$ 45.00
ALTS25	Adept	1	2	25,000 ft.	\$ 99.00
RRC2+	MissileWorks	1	2	40,000 ft.	\$ 45.00
Eggtimer (DIY)	Eggtimer	32	2	30,000 ft.	\$ 35.00
EasyMini	Altus Metrum	1	2	100,000 ft	\$ 80.00
StratoLoggerCF	PerfectFlite	16	2	100,000 ft	\$ 55.00
AIM USB	Entacore	1	2	40,000 ft.	\$ 99.00
Eggtimer TRS (DIY)	Eggtimer	32	2	30,000 ft.	\$ 90.00
RRCe Xtreme	MissileWorks	15	3	100,000 ft	\$ 80.00

Table 6 - Electronics Alternatives

The chart above shows some examples of the options for our launch vehicle that met our requirements. Seeing as we already have the StratoLoggerCF by PerfectFlite and have found it to be extremely reliable, we have chosen to use this type of altimeter. Since we have some experience with this altimeter, it will also make it easier for us to use. We have decided to use the StratoLoggerCF as our primary altimeter and the EggTimer TRS as our back-up. The EggTimer TRS is the most inexpensive of the altimeters that have GPS capabilities, thus eliminating the need to have a separate tracker. However, the downside to this is that it has to be assembled. When the EggTimer TRS arrives, it is just a bag of parts, so we must build this ourselves. The downside to making an altimeter yourself is that there is a high chance that the altimeter

could be faulty. Because of this, we must extensively test the EggTimer TRS once it is built to ensure that there are no faults and we can rely on it.

The following chart shows that the two flight computers are completely independent of each other.

Figure 4 – Redundant Flight Computer Diagram

2. Parachutes Alternatives

We have reviewed many different alternatives for our parachute. Our go-to Rocketman parachutes, we have found, weigh too much to be used as our main parachute but have a great amount of durability for being used as a drogue. Seeing as these parachute weigh too much for our launch vehicle, we have viewed other commercially available parachutes. Some other companies we have found are: Fruity Chutes, and Sky Angle. Sky Angle parachutes are very similar to the previously mentioned Rocketman chutes.

Sky Angle is similar in weight, drag, and shape to the Rocketman. But we need something with a higher amount of drag and of light weight. So, we found Fruity Chutes. Fruity Chutes are a great deal more expensive than the Rocketman chutes, but they are much lighter, and have significantly more drag. In the chart below, you can see the difference of weight, price and drag of the different parachutes.

Parachutes	Cd	Mass g.	Pr	ice
Fruity Chutes	2.2	309	\$	275
RocketMan/Sky Angle Chutes	1.7	283	\$	91.95

Table 7 - Parachute Alternatives

The above chutes are based upon a 60" diameter. Because of our live shrimp payload, we need the rocket to come in more slowly than would otherwise be required. Therefore, our leading alternative for the main chute is the Fruity Chute Compact Iris. We will still use the Rocketman ballistic drogue chute.

Figure 5 – Iris Ultra Compact Parachutes – Fruity Chutes (https://fruitychutes.com/buyachute/iris-ultra-chutes-30-to-192-c-18/)

	St. Monica – 2018 – PDR – Report – Document Submission.pdf	Version 2.1	Page 19 of 61 3-Nov-2017
--	---	-------------	-----------------------------

Figure 6 – RocketMan Ballistic Mach II Drogue

(http://the-rocketman.com/chutes.html)

3. Other Components

Recovery harnesses are used to connect the parachutes and other parts of the launch vehicle so it can safely land. For our recovery harnesses, we have found three different types of materials we will be able to use: nylon, Kevlar, and spectra. We had never even heard of spectra harnesses before we started looking for different alternatives. Nylon harnesses save some weight but are not fire resistant. They also have the lowest scored strength test of the three. Kevlar is extremely strong and is fire resistant unlike the nylon and spectra harnesses. Spectra lines are extremely light but are not fire resistant.

	Weight limit	Price	
Kevlar	2200 lb.	\$	3.30
Nylon	1000 lb.	\$	2.90
Spectra	1400 lb.	\$	11.50

Table 8 - Harness Alternatives

We compared the alternatives in the chart above according to strength and price per yard. We have decided to use Kevlar as it is the most durable and fire resistant. Even

though we have chosen Kevlar as our harness material, the parachute we will be using contains spectra shroud lines to save weight. This will not be an issue, however, as we will be using a deployment bag that will protect the parachute from the ejection charges and also help aid in deployment of the parachute.

C. Mission Performance Predictions –

- 1. Flight Simulations See Section III.A.5 above
- 2. Stability Margins- See Section III.A.4 above
- 3. Kinetic Energy at Landing

chute	Entire rocket	Minus booster	Minus booster and E-bay
Drogue	1005.61 lbf	576.4 lbf	414.44 lbf
Main	40.28 lbf	23.16 lbf	16.55 lbf

4. Drift Calculations

	0 mph	5 mph	10 mph	15 mph	20 mph
Ascent	0	132 ft.	264 ft.	396 ft.	528 ft.
Under Drogue (4680 ft.)	0	545 ft.	1090 ft.	1635 ft.	2180 ft.
Under Main (600 ft.)	0	405 ft.	810 ft.	1215 ft.	1620 ft.
Total	0	1,082 ft.	2164 ft.	3264 ft.	4328 ft.

IV. Safety

A. Personnel Hazard Analysis

Scale	Severity of Failure	Likelihood of Occurrence
1	Minimal or no impact	remote
2	Some	unlikely
3	Moderate	likely
4	major impact	highly likely
5	Unacceptable	near certainty

Figure 7 - Hazard Scale

Source	Hazard	Cause	Result	Severity	Likelihood	Mitigation
Drill	Puncture wounds.	Failure to	- Damage to person	3	2	Keep drill pointed away from hands, body. Use
	Particles in eyes.	clamp work	- Damage to rocket			protective eyewear, close-toed shoes, remove all
	Contusions.	properly.	- Damage to tool			jewelry and do not wear loose-fitting clothing.
	Lacerations.	Failure to				Always assume the tool is powered. Do not use dull
		keep hands,				bits. Concentrate on task while utilizing tool - do
		body out of				not become distracted. NEVER do more work than
		drill path.				the tool is capable of. Be patient and let the tool do
						the work.
Solder	Burns. Dust or flux	Incorrect	-Severe burns	3	2	Use protective eyewear, close-toed shoes, remove
	in eyes	equipment	-Eye irritation			all jewelry and do not wear loose-fitting clothing .
		use; contact				Always assume the tool is powered. Concentrate
		with heated				on task while utilizing tool - do not become
		work or				distracted.
		solder.				
Grease	Harmful if	- Not washing	-Irritated eyes,	2	2	-Do not induce vomiting if swallowed. Seek
	swallowed or	hands after	throat and nose.			medical advice as a precaution. For inhalation,
	inhaled	use -				move affected person to fresh air.
		Improper				
		ventilation				
Rotary hand	Particles in eyes	Incorrect use	- Damage to person	3	2	Use protective eyewear, close-toed shoes, remove
tool	Contusions	of equipment	- Damage to rocket			all jewelry and do not wear loose-fitting clothing.
	Lacerations	putting hand	- Damage to tool			Always assume the tool is powered. Do not use
		or body in				dull bits. Concentrate on task while utilizing tool -
		past of cutter.				do not become distracted. NEVER do more work
						than the tool is capable of. Be patient and let the
						tool do the work.
Drill press	Particles in eyes	Incorrect use	- Damage to person	3	2	Utilize protective eyewear, close-toed shoes,
	Contusions	of equipment	- Damage to rocket			remove all jewelry and do not wear loose-fitting
	Lacerations		- Damage to tool			clothing . Always assume the tool is powered.
						Concentrate on task while utilizing tool - do not
						become distracted. NEVER do more work than the
						tool is capable of. Be patient and let the tool do the
						work.
Lighters	Flammable	Incorrect use		2	2	Keep in cool, dry, ventelated storage and closed
	commpresed gas	of equipment	-Start an			containers. Keep away from heat, sparks and open
			unintentinal fires			flames
Sandpaper	May cause eye	Incorrect use	-May cause damage	2	2	Utilize protective eyewear and respirator designed
	irritation, skin	of equipment	to person			for dust inhalation.
	irritation,					
	inhalation of					
	harmful substances.					
	~					1 . 1 1
Table saw	Serious lacerations	Incorrect use	- Damage to person	5	1	Use protective eyewear, close-toed shoes, remove
	to fingers, hands,	of equipment	- Damage to rocket			all jewelry and do not wear loose-fitting clothing.
	limbs.	esp failure to				Always assume the tool is powered. Concentrate
		secure work				on task while utilizing tool - do not become
		or putting				distracted. NEVER do more work than the tool is
		hands, body				capable of. Be patient and let the tool do the work.
		or equipment				
		in path of saw			1	
		blade.			1	l l

Source	Hazard	Cause	Result	Severity	Likelihood	Mitigation
Compound	Laceration, esp of	Incorrect use	- Damage to person	5	1	Use protective eyewear, close-toed shoes, remove
slide miter saw	hands, fingers,	of equipment	- Damage to rocket			all jewelry and do not wear loose-fitting clothing .
	limbs.					Always assume the tool is powered. Concentrate
						distracted NEVER do more work than the tool is
						capable of. Be patient and let the tool do the work.
						explore on De parent and recar cor de an worm
Variable speed	Laceration, esp of	Incorrect use	- Damage to person			Use protective eyewear, close-toed shoes, remove
jigsaw	hands, fingers,	of equipment	 Damage to rocket 			all jewelry and do not wear loose-fitting clothing.
	limbs.					Always assume the tool is powered. Concentrate
						on task while utilizing tool - do not become
						capable of Be patient and let the tool do the work
				5	1	capable of. De patient and let the tool do the work.
Epoxy resin	Eye or skin	Failure to	-Irritated eyes and	2	2	Use gloves to contact glued surfaces and wear
1 2	irritation.	avoid glue or	throat			vapor-protective mask.
		hand contact				
		with eyes. Not				
		washing				
		hands with				
		proper solvent after				
		use				
Fast hardening	Eye or skin	-Insufficient	- Damage to person	2	2	Use protective eyewear, skin protection, and
glue	irritation. Irritation	ventilation.				respiratory mask.
	of breathing	Failure to				
	passages.	wear gloves				
		when handling				
		glued				
		surfaces. Not				
		hands with				
		proper				
		solvent after				
		use.				
Claw	Eve en alvin	Notwoshing	Domo so to noncon	2	2	Use protective everyoer ship protection and
bardening glue	irritation Irritation	- Not washing hands after	- Damage to person	2	2	respiratory mask
nardening grae	of breathing	use				respiratory mask.
	passages.	-Improper				
		protection				
Battery	Eye irritation from	Failure to	- Damage to person	3	2	Use protective eyewear, skin protection, and
	battery chemicals,	wear gloves	 Damage to rocket 			respiratory mask.
	inhalation,	during use.				
	reaction skin	wash hands				
	irritation.	with proper				
		soap, solvent				
		after use				
Epoxglas	Eye irritation, skin	Incorrect use	- Damage to person	2	3	Use protective eyewear, skin protection, and
	irritation,	of equipment	- Damage to rocket			respiratory mask.
	respiratory					
Dry lubricent	Irritation. Eve or skip	Improper	Damage to parson	2	2	Keen in cool dry ventalated storage and aloged
Dry nuoricant	irritation. Irritation	protection	- Damage to person	5	<i>2</i>	containers. Keep away from heat sparks and open
	of breathing	Protection	Duringe to rocket			flames
	passages.					

Source	Hazard	Cause	Result	Severity	Likelihood	Mitigation
Spray paint.	Eye or skin	-Improper	- Damage to	2	2	Use protective eyewear, skin protection, and
	irritation.	protection	person-			respiratory mask.
	Irritation of		Damage to			
	breathing		rocket			
	passages.					
Super glue	Eye or skin	-Improper	- Damage to	2	2	Use protective eyewear, skin protection, and
	irritation.	protection	person			respiratory mask.
	Irritation of					
	breathing					
	passages.					
Woodworkin	Lacerations or	Incorrect use	- Damage to	4	2	Use protective eyewear, close-toed shoes,
g tool	bruises.	of equipment	person-			remove all jewelry and do not wear loose-
			Damage to			fitting clothing. Always assume the tool is
			rocket			powered. Concentrate on task while utilizing
						tool - do not become distracted. NEVER do
						more work than the tool is capable of. Be
						patient and let the tool do the work.

Table 9 - Personal Safety Hazards

B. Failure Modes and Effects Analysis

Potential Failure	Cause	Consequence	Severity	Likelihood	Mitigation
External Structural		unstable flight/			Construct with through
Failure	Fins break or fail	vehicle failure	4	2	the wall fins
					screwed in to prevent
External Structural		unstable flight/			break off, also test for
Failure	rail buttons break	vehicle failure	3	3	looseness before flight
External Structural		unstable flight/			inspect body tubes for
Failure	body tube fails	vehicle failure	5	1	flaws prior to flight
					all body tubes will be
External Structural	Body tubes come	unstable flight/			mechanically fastened
Failure	apart during flight	vehicle failure	5	1	together
					Check motor to the
	Motor improperly				fullest possible degree
Motor Failure	assembled	Rocket Failure	1	2	before launch
		Unstable flight			
	Ignitor improperly	possible rocket			
Motor Failure	installed	failure	5	2	Test before launch
	centering rings not				Build carefully and
Internal Structural Failure	aligned correctly	unstable flight	3	1	measure multiple times
Internal Structural Failure	Motor retention fails	motor falls out	5	3	Test before launch.

Potential Failure	Cause	Consequence	Severity	Likelihood	Mitigation
		rocket			
		components			Design fitting for proper
		come in			load (eyebolts & quick
shock cord failure	excessive loading	ballistically	5	2	links)
		rocket			Check eyebolts,
		components			quicklings and recovery
	de-taches from eye	come in			harness for proper fit
shock cord failure	bolts	ballistically	5	2	prior to flight
		rocket			Inspect parachute
		components			compartments for sharp
	Cut by other objects	come in			edges prior to intalling
shock cord failure	in rocket	ballistically	5	1	parachutes
		rocket			
		components			
	burned by ejection	come in			Shock cord made from
shock cord failure	charges	ballistically	5	2	fireproof kevelar
		parachutes don't			
		deploy/rocket			Observe the motor before
	Ejection charges do	comes in			loading to see if the
Altimeter Failure	not go off	ballsitic	5	2	ejection charge is on
		parachutes don't			
		deploy/rocket			
		comes in			test deployment system
Ejection Charge failure	igniter failure	ballsitic	5	3	before launch
		parachutes fail			Ground test parachutes;
		to deploy, or			Inspect parachute
	Parachutes packed	tangle upon			packing during final
Parachute Failure	too tightly	deployment	5	3	assembly
	parachutes detach	rocket comes in			Check if parachutes are
Parachute Failure	from shock cord	ballistic	5	3	properly secured
					Protect parachutes and
					flamable shroud lines
	parachute burns	parachute opens			with flameproof shroud
	from ejection	partially, or not			lines with flameproof
Parachute Failure	charges	at all	5	3	material
		contaminates			
		the rest of the			
		rocket,			
		including			
Payload Environment	Water environment	motor/electronic			Test environment before
Fails	leaks	s	4	2	launch.

C. Project Risks

What	Likelihood	Impact	Mitigation
Fundraising	Medium	Medium	Begin fundraising
			early
Out of stock	Medium	Medium	Order early as early
components			as possible
Time understanding	High	High	Schedule tasks early
requirements			with detail and
			communicate!
Arduino	Medium	High	Need to start ASAP
programming			
Cooling system not	Medium	High	Accelerate schedule-
being completed			test early
Shrimp do not	Medium	High	Look for alternate
survive trip to			sources of shrimp in
Huntsville			Huntsville

Project Risks

Figure 8 - Project Risks

V. Payload Criteria

A. Scientific Experiment

It takes seven years for astronauts to reach Mars, and maintaining a self-sustaining food supply is a difficult problem. An ecosphere could possibly be the solution to that problem. Our scientific goal is to prove that it is possible to launch shrimp one-mile-high, and recover them without the shrimp dying. We will not be using an ecosphere because even though the gravitational pull would have kept the shrimp safely glued to the bottom, when coming down the organic matter, gravel and other objects that are inside the original ecosphere would potentially harm the shrimp, which would defeat the purpose of this experiment. So instead, we will be using a vessel that will hold only the shrimp and water.

The experiment will measure the gravitational forces on the shrimp to determine if they even can survive such gravitational force of the rocket being launched a mile high. The tank we will use will hold approximately 3-4 shrimp. We will have a control group we will be keeping on the ground. The conditions of the test group and the control group well have to be kept exactly the same. For example, the shrimp in the control and test group would need the same vessel, the same amount of water, the same amount of food, be kept at the same temperature and the same type of lighting. The vessel will have to be airtight in the rocket. We will design the vessel to have a maximum of 8 hours of oxygen supply once we seal the container. We will seal both containers at the same time and transport them both to the launch pad, but only the test group will go up in the rocket. During the flight, we will measure the gravitational forces using an accelerometer. After

we launch the test group, we will compare the two groups to see the differences in each group. The point of this experiment is to see if the gravitational forces have any effect on the shrimp.

Figure 4 How EcoSpheres Work

(Photo courtesy of Abundant Earth at http://www.abundantearth.com/store/media/howecosphereswork.jpg)

We will be sending other devices in our payload bay besides the shrimp in its vessel. These devices include an Arduino device that will control the temperature in the vessel and a thermo-electric cooler that will keep the shrimp at a constant temperature. We are exploring different ways to vent the heat produced by the thermo-electric cooler.

B. Why Shrimp

In our experiment, we will be using Brine Shrimp. We were going to use Brine Shrimp because they are protein filled, multiply easily and are hardier then most other kinds of shrimp. They are very temperature sensitive and most sources say to keep them at room temperature which we will say is between 70 to 85 degrees Fahrenheit. They need a very high level of salt in their water with 80% saline. A female lays her eggs and these can be hatched within minutes if the conditions are right. If there is not enough oxygen or salt, the eggs will remain dormant for up to 50 years before they hatch.

This is a chart we made to compare the differences between other varieties of shrimp.

Variety	Pros	Cons	Why we did or did
			not select variety
Brine shrimp	Eggs are easily obtainable and easy to take care of.	Must be kept at high saline (or salt) levels. Very temperature sensitive.	We did not select this variety because the salt levels are harder to manage then the Sea monkeys.
Fairy shrimp	Eggs are very hardy and can survive very dry climates.	They have no carapace, which is the hard shell that protects them. This make them more delicate and fragile.	They are very fragile and during the launch and flight, they could be easily killed.
Sea monkeys	Very robust, survive easily.	Lacks carapace. Very temperature sensitive.	We selected these shrimps because they are easy to obtain and easier to observe then the other shrimp, and reproduce quickly.

Table 10 - Shrimp Alternatives

We decided to use a variety of brine shrimp marketed as Sea Monkeys. Sea Monkeys were developed by Harold von Braunhut in 1957 to be an easy maintainable pet that did not need to live in salt water, and therefore easy to take care of. They have actually been sent into orbit twice. Once in 1972 and then again in 1989. On Oct 29, 1989, 400 million Sea Monkey eggs were taken into orbit for nine days in the spacecraft Discovery. Once back safely on Earth, the eggs hatched and there was no mutilations or deficiencies found in the shrimp. This showed that the gravitational forces did not have a visible effect on the shrimp eggs.

We decided on the Sea Monkey variety because it seems as though they are the easiest to upkeep and maintain, primarily as a result of not having to maintain a salt water habitat as with the other alternatives. They are strong and durable and there would not be as much of a risk of them being killed then if we used another variety of brine shrimp. They also reproduce quickly so we should only have to buy one batch of shrimp.

Figure 9 – Sea Monkey

(http://ecx.images-amazon.com/images/I/51OzP7yyTuL._SY300_.jpg)

C. Cooling System

The payload team conducted an experiment to see whether it was necessary for a water cooler to cool our sea monkey payload. An empty apple juice bottle, which is serving as our shrimp habitat, was filled with water. The bottle was put in a heat box whose temperature was 108 degrees. The starting temperature of the bottle was 72.8 degrees. In 30 minutes, the bottle of water increased in temperature to 92.2 degrees. The total water temperature change over 30 minutes was 19.4 degrees. With the surviving temperature for brine shrimp being 70-85 degrees this experiment demonstrated that it is highly likely our shrimp will not survive four hours on the launch pad without a cooling system.

The payload team performed a separate experiment, also using the heat box, to determine the difference in temperatures between a plain body tube and an insulated body tube. We conducted this experiment to see if adding insulation to the shrimp environment would be effective at keeping the shrimp environment cool in hot temperatures. If so, then we wouldn't need to construct a cooling system to keep our payload (brine shrimp) cool enough on our launch pad in the hot Alabama sun. We took one body tube and sanded the top and bottom of it until both sides fit well. Then we made a hole in the top of the body tube in which to fit a thermometer. With the other body tube, we did the same thing, but covered it with insulation as well, ensuring that all edges were sealed well. After assembling each body tube, we put both in a heat box with a temperature of 120 degrees. We picked the temperature of 120 because inside our closed rocket under the direct sunlight we believe it could get that hot.

For the first ten minutes the plain body tube was increasing in temperature significantly more than the insulated one. The heat box had decreased in temperature to 108 degrees,

probably from us opening up the lid and letting air escape. Within 10 minutes, the plain body tube went from a temperature of 74 degrees to a temperature of 109.5 degrees and the insulated body tube went from a temperature of 77.8 degrees to a temperature of 96.7 degrees.

Although the insulation makes a difference in temperature, keeping the tube marginally cooler; It didn't keep it cool enough to ensure the survival of our payload (brine shrimp). Therefore, we definitely need some sort of cooling system to keep our shrimp cool.

Figure 10 - Heat Test

Our cooling system operates mainly by our Peltier Cooler. This Peltier Cooler is lodged between two components as shown in the figure below. The Peltier cooler has a hot side, and a cold side. The cold side connects to a metal water block which will lead it to the rubber tubing. This tubing will be filled with water and this water will be circulated with a pump. The tubing connects to a copper coil and this coil surrounds the container for the shrimp. This coil will be cooled by the water and the water will be cooled by the Peltier Cooler. The heat sink will ensure that the heat from the hot side of the Peltier Cooler will not heat the shrimp. There is a fan connected to the heat sink which blows away any excess heat.

Figure 11 - The Cooling System

D. Payload System Design

Figure 12: Payload System Diagram

	St. Monica – 2018 – PDR – Report – Document Submission.pdf	Version 2.1	Page 32 of 61 3-Nov-2017
--	---	-------------	-----------------------------

VI. Project Plan

A. Requirements Verification

1. Handbook Criteria

General Requirements			
Requirement	Verification	How Satisfied	
1.1. Students on the team will do 100% of the project, including design, construction, written reports, presentations, and flight preparation with the exception of assembling the motors and handling black powder or any variant of ejection charges, or preparing and installing electric matches (to be done by the team's mentor).	Observation	The team will take notes of their progress and steps to success, showing that they did all of the work.	
1.2. The team will provide and maintain a project plan to include, but not limited to the following items: project milestones, budget and community support, checklists, personnel assigned, educational engagement events, and risks and mitigations.	Analysis	The project plan consists of the events necessary for the project's success. Milestones, budget, community support, checklists, personnel assigned, educational engagement, and risks and mitigations will all be provided.	
1.3. Foreign National (FN) team members must be identified by the Preliminary Design Review (PDR) and may or may not have access to certain activities during launch week due to security restrictions. In addition, FN's may be separated from their team during these activities.	Observation	Our team does not have any FN team members	

General Requirements			
Requirement	Verification	How Satisfied	
Requirement1.4. The team must identify all teammembers attending launch weekactivities by the Critical DesignReview (CDR). Team members willinclude:1.4.1. Students actively engaged inthe project throughout the entireyear.1.4.2. One mentor (seerequirement 1.14).	Verification	All members attending launch week, will be identified by CDR. Their individual roles throughout the year will be recorded No more than two adult educators will attend launch week activities	
1.4.3. No more than two adult educators. 1.5. The team will engage a minimum of 200 participants in educational, hands-on science, technology, engineering, and mathematics (STEM) activities, as defined in the Educational Engagement Activity Report, by FRR. An educational engagement activity report will be completed and submitted within two weeks after completion of an event. A sample of the educational engagement activity report can be found on page 30 of the handbook. To satisfy this requirement, all events must occur between project acceptance and the FRR due date.	Analysis	Educational Engagement will include: informing children about our project and Nasa Student Launch, showing our successes and up until that point, and having a large demo rocket for them to see individual parts and understand the rocket more fully.	
1.6. The team will develop and host a Web site for project documentation.	Observation	The team's website is <u>www.stmonicarocketryclub.com</u> , all of our documents will be uploaded to this site.	
1.7. Teams will post, and make available for download, the required deliverables to the team Web site by the due dates specified in the project timeline.	Observation, Analysis	All documents, private or public, will be available for download on the website by the due dates specified in the project timeline.	

General Requirements				
Requirement	Verification	How Satisfied		
1.8. All deliverables must be in PDF format.		All documents will be converted into PDF format.		
1.9. In every report, teams will provide a table of contents including major sections and their respective sub-sections.	Observation, Analysis	Reports will have a table of contents, including major sections and their respective subsections.		
1.10. In every report, the team will include the page number at the bottom of the page.	Observation	The page number that we will include on the bottom of the page will correlate with our table of contents.		
1.11. The team will provide any computer equipment necessary to perform a video teleconference with the review panel. This includes, but is not limited to, a computer system, video camera, speaker telephone, and a broadband Internet connection. Cellular phones can be used for speakerphone capability only as a last resort.	Observation	The team has two locations for video teleconferences, one main and one backup. Both consist of a computer system, video camera, speaker phone and a solid internet connection.		
1.12. All teams will be required to use the launch pads provided by Student Launch's launch service provider. No custom pads will be permitted on the launch field. Launch services will have 8 ft. 1010 rails, and 8 and 12 ft. 1515 rails available for use.	Test	Our design was made to accommodate for launch services provided.		

General Requirements				
Requirement	Verification	How Satisfied		
1.13. Teams must implement the	Analysis	Teams will implement the EIT		
Architectural and Transportation		accessibility standards.		
Barriers Compliance Board				
Electronic and Information				
Technology (EIT) Accessibility				
Standards (36 CFR Part 1194)				
Subpart B-Technical Standards				
(http://www.section508.gov):				
§1194.21 Software applications				
and operating systems.				
§1194.22 Web-based intranet and				
Internet information and				
applications.				

General Requirements				
Requirement	Verification	How Satisfied		
1.14. Each team must identify a "mentor." A mentor is defined as an adult who is included as a team member, who will be supporting the team (or multiple teams) throughout the project year, and may or may not be affiliated with the school, institution, or organization. The mentor must maintain a current certification, and be in good standing, through the National Association of Rocketry (NAR) or Tripoli Rocketry Association (TRA) for the motor impulse of the launch vehicle and must have flown and successfully recovered (using electronic, staged recovery) a minimum of 2 flights in this or a higher impulse class, prior to PDR. The mentor is designated as the individual owner of the rocket for liability purposes and must travel with the team to launch week. One travel stipend will be provided per mentor regardless of the number of teams he or she supports. The stipend will only be provided if the team passes FRR and the team and mentor attends launch week in April.	Observation	Our mentor maintains a current certification, through NAR or TRA. He is certified to fly, and has flown the motor of which our design has. He has had a minimum of 2 flights in this or a higher impulse class, prior to PDR. Our mentor is designated as the individual owner of the rocket, for liability purposes and this rocket will travel with us to launch week.		

 Table 11 - General Requirements

Design Requirements				
Requirement	Verification	How Satisfied		
2.1. The vehicle will deliver the payload to an apogee altitude of 5,280 feet above ground level (AGL).	TEST/DEMOMSTR ATION	To test this requirement the team will launch the vehicle prior to the FRR and make any modifications necessary to bring the vehicle to 5,280 ft.		
2.6. The launch vehicle will be designed to be recoverable and reusable. Reusable is defined as being able to launch again on the same day without repairs or modifications.	INSPECTION	The materials of the vehicle must be thoroughly inspected to ensure quality before use.		
2.7. The launch vehicle will have a maximum of four (4) independent sections. An independent section is defined as a section that is either tethered to the main vehicle or is recovered separately from the main vehicle using its own parachute.	INSPECTION	The team will ensure that the design has 4 or less sections.		
2.8. The launch vehicle will be limited to a single stage	INSPECTION	The team will ensure that the design has only one stage		
2.9. The launch vehicle will be capable of being prepared for flight at the launch site within 3 hours of the time the Federal Aviation Administration flight waiver opens.	DEMONSTRATION	The team will demonstrate at every launch that the rocket is capable of being prepared within 3 hours of the flight waiver being opened.		
2.10. The launch vehicle will be capable of remaining in launch- ready configuration at the pad for a minimum of 1 hour without losing the functionality of any critical on- board components.	TEST/DEMONSTR ATION	The team will demonstrate at every launch that the rocket is able to remain in launch-ready configuration for a minimum of 1 hour without losing functionality.		
2.11. The launch vehicle will be capable of being launched by a standard 12-volt direct current firing system. The firing system will be provided by the NASA-designated Range Services Provider.	TEST	The team will test the rocket on a 12-volt direct current firing system.		
2.12. The launch vehicle will require no external circuitry or special ground support equipment to initiate	DEMONSTRATION	The team will demonstrate that all launch equipment is internal or provided by Range Services.		

Design Requirements				
Requirement	Verification	How Satisfied		
launch (other than what is provided				
by Range Services).				
2.13. The launch vehicle will use a	INSPECTION/DEM	The team will ensure that the K-		
commercially available solid motor	ONSTRATION	class motor has been approved		
propulsion system using ammonium		by NAR, TRA, or CAR, and will		
perchlorate composite propellant		demonstrate that the motor has		
(APCP) which is approved and		the ability to propel the rocket.		
certified by the National Association				
Di Rocketry (NAR), Impoli Dealectry Association (TPA) and/or				
the Canadian Association of				
Rocketry $(C \Delta R)$				
2 13 1 Final motor choices must be	DEMONSTRATION	The team will show that their		
made by the Critical Design	DEMONSTRATION	final motor has been selected		
Review (CDR)		prior to the Critical Design		
		Review.		
2.13.2. Any motor changes after	DEMONSTRATION	The team will show that the		
CDR must be approved by the		motor has not been changed after		
NASA Range Safety Officer		CDR unless it is necessary to		
(RSO), and will only be approved if		increase safety.		
the change is for the sole purpose of				
increasing the safety margin.				
2.16. The launch vehicle will have a	TEST	The team will simulate and test		
minimum static stability margin of		the rocket to ensure it has a		
2.0 at the point of rail exit. Rail exit		minimum static stability margin		
is defined at the point where the		of 2.0 at the point of rail exit.		
forward rail button loses contact				
With the fall.	TEST	The team will simulate and test		
2.17. The faunch vehicle will accelerate to a minimum velocity of	1651	the rocket to ensure it will		
52 fps at rail exit		accelerate to a minimum velocity		
		of 52 fps at rail exit		
2 18 All teams will successfully	TEST/DEMONSTR	The team will demonstrate the		
launch and recover a subscale model	ATION	ability of their subscale rocket at		
of their rocket prior to CDR.		a launch prior to CDR.		
Subscales are not required to be high		1		
power rockets.				
2.18.1. The subscale model should	TEST/DEMONSRA	The team will build a subscale		
resemble and perform as similarly	TION	rocket, test its ability at a launch,		
as possible to the full-scale model,		and demonstrate its similarity to		
		the full-scale rocket.		

Design Requirements				
Requirement	Verification	How Satisfied		
however, the full-scale will not be				
used as the subscale model.				
2.18.2. The subscale model will	INSPECTION	The team will ensure the		
carry an altimeter capable of		altimeter of choice is capable of		
reporting the model's apogee		reporting the model's apogee		
altitude.		altitude.		
2.19. All teams will successfully	TEST/DEMONSTR	The team will test their full-scale		
launch and recover their full-scale	ATION	rocket in a launch prior to FRR		
rocket prior to FRR in its final flight		and demonstrate a successful		
configuration. The rocket flown at		launch with the same rocket that		
FRR must be the same rocket to be		will be used on the final launch		
flown on launch day. The purpose of		day.		
the full-scale demonstration flight is				
to demonstrate the launch vehicle's				
stability, structural integrity,				
recovery systems, and the team's				
ability to prepare the launch vehicle				
for flight. A successful flight is				
defined as a faunch in which all				
(i.e. drogue abute et apagee main				
(i.e. diogue chute at apogee, main abuta at a lower altituda functioning				
tracking devices at) The				
following aritaria must be mat				
during the full scale demonstration				
flight:				
2 10 1 The vehicle and recovery	DEMONSTRATION	The team will demonstrate at a		
system will have functioned as	DEMONSTRATION	launch that the recovery system		
designed		functions as designed		
2 19 2 The payload does not have		The payload may or may not be		
to be flown during the full-scale test		flown with in the full-scale test		
flight The following requirements		flight depending on its		
still apply.		completion		
2.19.2.1. If the pavload is not	TEST/DEMONSTR	The team will test the weight of		
flown mass simulators will be	ATION	the payload with either the		
used to simulate the payload mass		payload itself or an object of		
		similar mass, and demonstrate		
		that the rocket is functional with		
		this payload.		
2.19.2.1.1. The mass simulators	INSPECTION	The team will ensure that in case		
will be located in the same		of the payload not being		

Design Requirements			
Requirement	Verification	How Satisfied	
approximate location on the rocket as the missing payload mass.		completed in time, the mass simulators will be located in the same approximate location as the missing payload mass	
2.19.4. The full-scale motor does not have to be flown during the full- scale test flight. However, it is recommended that the full-scale motor be used to demonstrate full flight readiness and altitude verification. If the full-scale motor is not flown during the full-scale flight, it is desired that the motor simulates, as closely as possible, the predicted maximum velocity and maximum acceleration of the launch day flight.	TEST/DEMONSTR ATION	The team will test a subscale motor in the rocket during the test flight, and demonstrate that the subscale motor will simulate the full-scale motor performance as closely as possible.	
2.19.5. The vehicle must be flown in its fully ballasted configuration during the full-scale test flight. Fully ballasted refers to the same amount of ballast that will be flown during the launch day flight. Additional ballast may not be added without a re-flight of the full-scale launch vehicle.	INSPECTION	The team will ensure that the amount of ballast used at the full- scale test flight is equal to the amount used at the final launch.	
2.19.6. After successfully completing the full-scale demonstration flight, the launch vehicle or any of its components will not be modified without the concurrence of the NASA Range Safety Officer (RSO).	DEMONSTRATION	The team will demonstrate that no vehicle components have been altered after the full-scale test flight.	
2.19.7. Full scale flights must be completed by the start of FRRs (March 6, 2018). If the Student Launch office determines that a re- flight is necessary, then an extension to March 28, 2018 will be granted. This extension is only	DEMONSTRATION	The team will show that any test flights will have taken place prior to March 6, 2018.	

Design Requirements			
Requirement	Verification	How Satisfied	
valid for re-flights; not first-time flights.			
2.20. Any structural protuberance on the rocket will be located aft of the burnout center of gravity.	INSPECTION	The team will ensure that there will be no structural protuberances on the rocket except for the fins and rail buttons, which are located aft of the burnout CG.	
2.21. Vehicle Prohibitions	INSPECTION	The team will ensure that none of the following prohibited items are used in the rocket or for the launch of the rocket.	
2.21.1. The launch vehicle will not utilize forward canards.	INSPECTION	The vehicle will not utilize forward canards.	
2.21.2. The launch vehicle will not utilize forward firing motors.	INSPECTION	The vehicle will not utilize forward firing motors.	
2.21.3. The launch vehicle will not utilize motors that expel titanium sponges (Sparky, Skid mark, Metal Storm, etc.)	INSPECTION	The vehicle will not utilize motors that expel titanium sponges.	
2.21.4. The launch vehicle will not utilize hybrid motors.	INSPECTION	The vehicle will not utilize hybrid motors.	
2.21.5. The launch vehicle will not utilize a cluster of motors.	INSPECTION	The vehicle will not utilize a cluster of motors.	
2.21.6. The launch vehicle will not utilize friction fitting for motors.	INSPECTION	The vehicle will not utilize friction fitting in its motor tube.	
2.21.7. The launch vehicle will not exceed Mach 1 at any point during flight.	INSPECTION	The vehicle will not exceed Mach 1 at any point during flight.	
2.21.8. Vehicle ballast will not exceed 10% of the total weight of the rocket.	INSPECTION	The vehicle ballast will not exceed 10% of the net vehicle weight.	

 Table 12 - Design Requirements

Recovery Requirements		
Requirement	Verification	How Satisfied
3.1. The launch vehicle will stage the deployment of its recovery devices, where a drogue parachute is deployed at apogee and a main parachute is deployed at a lower altitude. Tumble or streamer recovery from apogee to main parachute deployment is also permissible, provided that kinetic energy during drogue-stage descent is reasonable, as deemed by the RSO.	Demonstration/analysis	The launch vehicle will demonstrate a successful deployment of both the drogue and main parachutes. Analysis through calculations will prove that the kinetic energy during drogue-stage descent is reasonable.
3.2. Each team must perform a successful ground ejection test for both the drogue and main parachutes. This must be done prior to the initial subscale and full-scale launches.	Demonstration.	The team will demonstrate a successful ground ejection test prior to the initial launch.
3.3. At landing, each independent sections of the launch vehicle will have a maximum kinetic energy of 75 ftlbf.	Analysis.	Analysis through calculations will prove that upon landing, the launch vehicle will have a maximum kinetic energy of 75 ftlbf
3.4. The recovery system electrical circuits will be completely independent of any payload electrical circuits.	Inspection.	Inspection will prove that the recovery system electrical circuits are completely independent of any payload electrical circuits.
3.5. All recovery electronics will be powered by commercially available batteries.	Inspection.	Inspection will prove that all recovery electronics are powered by commercially available batteries.
3.6. The recovery system will contain redundant, commercially available altimeters. The term "altimeters" includes both simple altimeters and more sophisticated flight computers.	Inspection.	Inspection will prove that the recovery system contains redundant commercially available altimeters.
3.7. Motor ejection is not a permissible form of primary or secondary deployment.	Inspection.	Inspection will prove that the launch vehicle does not use motor ejection.
3.8. Removable shear pins will be used for both the main parachute compartment and the drogue parachute compartment.	Inspection.	Inspection will prove that removable sheer pins will be used.

	St. Monica – 2018 – PDR – Report – Document Submission.pdf	Version 2.1	Page 43 of 61 3-Nov-2017	
--	---	-------------	-----------------------------	--

Recovery Requirements		
Requirement	Verification	How Satisfied
3.9. Recovery area will be limited to a 2500 ft. radius from the launch pads.	Analysis.	Analysis through calculations will prove that the recovery area is within a 2500 ft. radius.
3.10. An electronic tracking device will be installed in the launch vehicle and will transmit the position of the tethered vehicle or any independent section to a ground receiver.	Inspection.	Inspection will prove that an electronic tracking device will be located in the launch vehicle and will transmit the position of the tethered vehicle or any independent section to a ground receiver.
3.10.1. Any rocket section, or payload component which lands untethered to the launch vehicle will also carry an active electronic tracking device.	Inspection.	Inspection will prove that any rocket section or payload component will carry its own separate tracking device.
3.10.2. The electronic tracking device will be fully functional during the official flight on launch day.	Test/Inspection.	Tests and inspection will prove that the electronic tracking device will be fully functional during the official launch day.
3.11. The recovery system electronics will not be adversely affected by any other on-board electronic devices during flight (from launch until landing).	Inspection.	Inspection will prove that the recovery system electronics will not be adversely affected by any other on-board electronic devices during flight.
3.11.1. The recovery system altimeters will be physically located in a separate compartment within the vehicle from any other radio frequency transmitting device and/or magnetic wave producing device.	Inspection.	Inspection will prove that the recovery system altimeters will be physically located in a separate compartment within the vehicle from any other radio frequency transmitting device and/or magnetic wave producing device.
3.11.2. The recovery system electronics will be shielded from all onboard transmitting devices, to avoid inadvertent excitation of the recovery system electronics.	Inspection.	Inspection will prove that the recovery system electronics will be shielded from all onboard transmitting devices.

Recovery Requirements		
Requirement	Verification	How Satisfied
3.11.3. The recovery system electronics will be shielded from all onboard devices which may generate magnetic waves (such as generators, solenoid valves, and Tesla coils) to avoid inadvertent excitation of the recovery system.	Inspection.	Inspection will prove that the recovery system electronics will be shielded from all other onboard devices which may generate magnetic waves.
3.11.4. The recovery system electronics will be shielded from any other onboard devices which may adversely affect the proper operation of the recovery system electronics.	Inspection.	Inspection will prove that the recovery system electronics will be shielded from any other onboard devices which may adversely affect the proper operation of the recovery system electronics.

 Table 13 - Recovery Requirements

Experiment Requirements		
Requirement	Verification	How Satisfied
4.1. The launch vehicle will	We will analyze the	We will only fly a NASA
carry a science or engineering	requirements and make	approved payload.
payload. The payload may be of	sure that our payload meets	
the team's discretion, but must	them.	
be approved by NASA. NASA		
reserves the authority to require		
a team to modify or change a		
payload, as deemed necessary		
by the Review Panel, even after		
a proposal has been awarded.		
4.2. Data from the science or	We will inspect if this	We will be collecting data,
engineering payload will be	work was done.	graphs and charts during our
collected, analyzed, and		experiment, and will analyze
reported by the team following		them as we go along.
the scientific method.		
4.3. Unmanned aerial vehicle	We will inspect our	We do not have a UAV.
(UAV) payloads of any type will	payload for a UAV.	
be tethered to the vehicle with a		
remotely controlled release		
mechanism until the RSO has		

	St. Monica – 2018 – PDR – Report – Document Submission.pdf	Version 2.1	Page 45 of 61 3-Nov-2017
--	---	-------------	-----------------------------

given the authority to release the UAV.		
4.4. Any payload element that is jettisoned during the recovery phase, or after the launch vehicle lands, will receive real-time RSO permission prior to initiating the jettison event.	We will test for a payload item that could be jettisoned and inspect if an item did jettison.	We do not have any payload element that will be jettisoned.
4.5. The payload must be designed to be recoverable and reusable. Reusable is defined as being able to be launched again on the same day without repairs or modifications.	We will test if our design is reusable.	Our design is reusable.
The cooling system is affective and works properly.	We will test if the cooling system will work.	We will use an air heated box which we will put our cooling system in. We will then verify if the cooling system can cool the shrimp.
The Arduino is programmed correctly and is functional.	We will test the Arduino.	We will test if the components attached to the Arduino react when they are put under the circumstances that they are supposed to react to.
If the payload gets below the	We will test and then	We will leave the cooler off
If the payload exceeds the	We will test and then	We will insure that the cooler
temperature 85 degrees.	correct this problem.	stays on longer to cure this problem.
That the battery lasts long enough.	We will test if the battery lasts long enough.	We will plug the battery in and test if it lasts for the time we require.
That the shrimp holder does not leak	We will test if the shrimp holder leaks	We will set the payload down and check if view if it leaks
The impact that the shrimp can	We will test on the impact	We will drop our payload from
withstand.	that the shrimp can withstand without dying.	different heights and see the highest height which they can withstand.

Table 14 - Payload Requirements

Safety Requirements			
Requirement	Verification	How Satisfied	
5.1. Each team will use a launch and	Analysis	The team will use a launch	
safety checklist. The final checklists		and safety checklist, and it	
will be included in the FRR report		will be included in the FRR	
and used during the Launch		report and used during the	
Readiness Review (LRR) and any		LRR and any launch day	
launch day operations.		operations.	
5.2. Each team must identify a	Analysis, Observation	The team will identify a	
student safety officer who will be		student safety officer who	
responsible for all items in section		will be responsible for all	
5.3.		item in section 5.3.	

Dequinement	Varification	
Requirement	vermeation	How Satisfied
5.4. During test flights, teams will abide by the rules and guidance of the local rocketry club's RSO. The allowance of certain vehicle configurations and/or payloads at the NASA Student Launch Initiative does not give explicit or implicit authority for teams to fly those certain vehicle configurations and/or payloads at other club launches. Teams should communicate their intentions to the local club's President or Prefect and RSO before attending any NAR or TRA launch.	Analysis, Observation	Teams will abide by the rules and guidance of the local rocketry club's RSO. The allowance of certain vehicle configurations and/or payloads at the NASA Student Launch Initiative does not give explicit or implicit authority for teams to fly those certain vehicle configurations and/or payloads at other club launches. Teams should communicate their intentions to the local club's President or Prefect and RSO before attending any NAR or TRA launch.
5.5. Teams will abide by all rules set forth by the FAA.	Analysis, Observation	Teams will abide by all rules set forth by the FAA.

Table 15 - Safety Requirements

2. Team Specific Criteria

Requirement	Verification	How Satisfied
The cooling system is	We will test if the cooling	We will use a heated box
effective and works	system will work.	which we will put our
properly.		cooling system in. We will
		then verify if the cooling
		system can cool the shrimp
		vessel to the required
		temperature.
The Arduino is programmed	We will test the Arduino.	We will test if the
correctly and is functional.		components attached to the
		Arduino react when they are
		put under the circumstances
		that they are supposed to
		react to.
That the battery lasts long	Analysis and test	We will calculate the
enough.		required battery capacity and

		test to ensure it lasts that
		duration.
That the shrimp holder does	Test	We will perform various
not leak.		tests on the shrimp vessel to
		ensure that it does not leak,
		including drop tests.
The impact that the shrimp	Analysis and Test	We will drop our payload
can withstand.		from different heights and
		see the highest height which
		they can withstand.
Verify that the Eggtimer	Demonstration/testing	We will test the Eggtimer
TRS and LCD receiver work		TRS in our sub-scale model
		and again in the full scale to
		ensure it works as designed.

B. Budgeting and Timeline

1. Budget

Summary

EXPENSE BUDGET SUMMARY										
Budget Item	A	mount	Comment							
Full Scale Rocket and Payload	\$	1,476	Includes payload and electronics expenses							
Subscale Rocket	\$	100	Do not need electronics or recovery							
Motors	\$	570	3x K class @ \$150 ea. And 3x H class @ \$40 ea.							
Huntsville Travel/Lodging	\$	5,923								
Educational Engagement	\$	200								
Fundraising	\$	200								
Website	\$	100								
Shipping and Handling	\$	110								
Other	\$	250								
	\$	8,929								

Table 16 - Budget Summary

Huntsville Trip

EXPENSE BUDGET SUMMARY											
Budget Item	Price	Quantity	Total	Comment							
Hotel/Lodging	\$ 133.58	24	\$ 3,205.92	six nights							
Vehicle	0	2	\$-	Borrowing cars from parents							
Gas	3	308	\$ 923.08	1000mi. @ 13 mpg.							
Food	23	78	\$ 1,794.00	breakfast free, lunch \$8, dinner \$15							
			\$ 5,923.00								

 Table 17 - Budget Huntsville Trip

FULL SCALE ROCKET AND PAY	LOAD EXPEN	SE BU	JDGE	T - Blue Tu	ube substitute			
					Mass (grams)		Cost	
Totals				1	7,968.13	\$	1,476.02	
Lookup Description	Lookup_Unit	Loo	kup\$	Quantity	Calculated Weight	Calo	culated Price	Comment
BOOSTER								
3.9" BlueTube Airframe	g/in	\$	0.81	22	332.29	\$	17.85	Booster, Exterior Body Tube
Tailcone 390 to 54mm	g	\$	54.00	1	115.00	\$	54.00	
2.1" BlueTube Airframe	g/in	\$	0.50	22	187.92	\$	10.98	54mm motor mount
Centering Ring 3.9" to 2.1"	g	\$	7.20	3	77.68	\$	21.60	centering rings for motor mount
								2 threaded rod stiffeners to go through
1/4-20 stainless threaded rod	g/in	\$	0.12	48	220.00	\$	5.70	centering rings
1/4-20 eye nut	g	\$	4.62	2	35.15	\$	9.24	eye nuts to attach booster to aft recovery
1/4-20 Hex Nut	g	\$	0.24	2	6.45	\$	0.47	
1/4" Split Lock Washer	g	\$	0.25	4	4.00	\$	0.99	
1/4" Washer	g	\$	0.50	4	5.60	\$	1.99	
1515 rail button- pair (large)	g	\$	2.50	1	15.00	\$	2.50	
1/4" Aircraft Plywood	g	\$	0.02	150	235.94	\$	3.13	Fins
Paint & Glue	0				200.00	\$	20.00	
					1,435.03	\$	148.44	
					,			
LOWER RECOVERY								
3.9" BlueTube Airframe	g/in	\$	0.81	17	256.77	\$	13.79	
Rocketman drogue balistick 2 feet		\$	70.00	1	166.80	\$	70.00	
		-				-		Coupler between booster and aft
3.9" BlueTube Coupler	g/in	\$	0.83	8	120.00	S	6.66	recovery
18x18 nomax	8,	s	10.00	1	39.80	ŝ	10.00	
Harness: 3/16" tubular keylar - 25 ft		Ψ	10.00	1	57.00	φ	10.00	
long 3 loop		¢	25.00	1	138 10	¢	25.00	
3/16" Ouik Link	σ	\$	1.95	1	85.60	s S	7.80	2 attach to booster 2 attach to e-bay
Paint & Glue	5	Ψ	1.75		100.00	\$	5.00	2 attach to booster, 2 attach to e-bay
T and & Grae					907.07	\$	138.25	
					507.07	Φ	100.25	
ELECTRONICS BAY								
Stratologger CF Altimeter	σ	s	57 50	1	10.21	s	57.50	
TRS Altimeter/Tracker	σ	s	75.00	1	40.00	s	75.00	
Wiring	σ	s	4 00	2	28.92	ŝ	8.00	
Screw Switch	σ	s	3.00	2	7 37	ŝ	6.00	
Charge Holder (3.0g) - pair	σ	s	10.00	2	53.20	ŝ	20.00	
1/4-20 stainless threaded rod	g/in	s	0.12	22	100.83	ŝ	20.00	2 nieces that extend through ehav
1/4-20 eve put	g III	ŝ	4.62	4	70.31	ŝ	18.48	2 on each end of ebay
1/4-20 Hex Nut - aluminum	σ	s	0.07		8.00	ŝ	0.58	for interior of ebay to secure sled
1/4" Split Lock Wesher	g	¢ ¢	0.07	0	4.00	ф С	0.98	for merior of eday to see the sted
1/4 Spirt Lock Washer	g g	ф С	0.23	4	5.60	ф С	1.00	
1/4 Washer 1/9" C10 Eiberglage Sheet	g g / in^2	о С	0.30	10	100.27	9	2 22	9 x 2.5 abovelod
	g/ III 2	φ	0.12	28	109.27	Φ	3.33	2 required for Eagtimer and 1 for
Turnicy 500mph 2c	a	¢	6.00	2	174.00	¢	10.00	2 required for Egginner and 1 for Stratalogger
2 Oll Airforms Dulldog d	В Э	\$ \$	5.40	3	1/4.00	۵ ۵	10.00	Suawiogger
2.0" Counter Buildered	В Ф	\$ \$	5.40	2	70.92) (10.80	
2.0" PlueTube Courter	g g / in	\$ \$	0.92	2	12.29	\$ \$	10.80	
5.7 Blue Lube Coupler	g/III	\$	0.83	9	135.00	۵ ۵	7.49	
Paint & Glue					100.00	5	5.00	
					995.92	3	246.56	

Lookup Description	Lookup_Unit	Lookup\$	Quantity	Calculated Weight	Calculated Price	Comment
FORWARD RECOVERY						
3.9" BlueTube Airframe	g/in	\$ 0.81	22	332.29	\$ 17.85	
FruityChute Iris Ultra compact 120	0	\$ 504.00	1	627.00	\$ 504.00	
4" Deployment bag - 9" long	0	\$ 42.00	1	100.00	\$ 42.00	
Harness: 1/2" Flat kevlar - 25 ft long,						
2 loop	0	\$ 25.00	2	376.00	\$ 50.00	
3/16" Quik Link	g	\$ 1.95	4	85.60	\$ 7.80	2 to attach to ebay and 2 to payload
Paint & Glue				100.00	\$ 5.00	
				1,620.89	\$ 626.65	
PAYLOAD						
3.9" BlueTube Airframe	g/in	\$ 0.81	14	211.46	\$ 11.36	
3.9" Nose Cone - 12.75"	g	\$ 23.05	1	200.00	\$ 23.05	LOC precision
3.9" BlueTube Coupler	g/in	\$ 0.83	8	120.00	\$ 6.66	Fwd recovery to Payload
3.9" Airframe Bulkhead	g	\$ 5.40	1	38.46	\$ 5.40	
3.9" Coupler Bulkhead	g	\$ 5.40	1	36.15	\$ 5.40	
1/4-20 eye nut	g	\$ 4.62	2	35.15	\$ 9.24	
Payload Adruino Parts	0	\$ 250.00	1	2,268.00	\$ 250.00	This is just a placeholder
Paint & Glue				100.00	\$ 5.00	
				3,009.22	\$ 316.11	

Table 18 - Budget Full Scale Rocket and Payload

Shipping and Handling:	
Vendor	\$
Always Ready Rocketry (BlueTube, rings, nosecone) -	30
Perfectflite (altimeters) -	6
Eggtimer (altimeters) -	6
Railbuttons.com (railbuttons) -	3
Fruity Chutes (parachutes)-	10
McMaster (various hardware) -	8
Hobbyking (batteries) -	8
Ebay – Peltier/waterpump -	3
MissileWorks – ScrewSwitch -	6
Unicorn Stainless – Hardware -	30
Total	110

Table 19 Budget Shipping and Handling Costs

Fundraising

The Saint Monica Rocketry Club (Rocket Club) has a variety of ideas to raise money for this program. The projected income and expenses are reflected in the budget within this document.

1. We will offer raffle off a \$100 American Express Gift Card. The tickets will be able to purchase for \$10 each. We will go to our neighbors, tell them about our Rocket Club and ask them to buy tickets. The expense is \$100 for the cost of the American Express Gift Card. We will sell a minimum of 75 tickets. The net income will be \$650.

2. Prime Taco a new restaurant in Ridgefield, CT has offered the Rocket Club their Soft Opening. A Soft Opening is when a new restaurant tries out their menu and staff on a limited number of customers. Prime Taco will donate 10% of their sales to the Rocket Club. Additionally, Prime Burger, their other restaurant in Ridgefield will offer an additional day of sales from their restaurant of 10% sales. Anything less than \$2,000 will be given by the owners. Therefore, we are guaranteed \$2,000.

 The Rocket Club has a Go Fund Me page at https://www.gofundme.com/stmonicarocketry. All team members, friends and family will post this Go Fund Me page on all their social media and regularly ask for money for this. We anticipate an income of \$1,000; however, Go Fund Me takes a 25% commission, so our net will be \$750.
 We will ask 5 benefactors to give the Rocket Club \$500 each. There's no expense with this, so our income would be \$2,500.

5. Ridgefield, CT businesses will be asked to contribute money to the Rocket Club by asking door-to-door. We will ask for Gift Cards and raffle them off, and we will ask for cash. This income is projected to be \$1,000.

6. NY and CT Space Grant require grant applications. The NY Space Grant has been completed, and we have received the maximum grant allowed of \$2,000. CT application is due on Dec 1. We anticipate \$1,000 from CT Space Grant.

This funding plan is taking into account no expenditures from our 11 team members' families. Any deficit will be split evenly between all team members.

Description	Income	Expense	Net
\$100 American Express card	\$750.00	\$100.00	\$650.00
Soft Opening for Prime Taco	\$2,000.00	\$0.00	\$2,000.00
Go Fund Me	\$1,000.00	\$250.00	\$750.00
Hit up 5 benefactors (\$500 each)	\$2,500.00	0	\$2,500.00
Ridgefield Sponsorship	\$1,000.00	0	\$1,000.00
NY and CT space grant	\$3,000.00	0	\$3,000.00
Total			\$9,900.00

Table 20 - Fundraising

2. Timeline –

ID	0	Task Mode	Task Name	Duration	Start	Finish	ep 24, F	17	т	Nov 1	9, '17 W	J	lan 14 S	'18 T	M	ar 11, '	'18 F
1	1	*	Subscale Rocket	61 days	Sun 10/22/17	Fri 1/12/18		C	ł			- 3					
2	1	*	Subscale Rocksim Design	7 days	Sun 10/22/17	Sun 10/29/17											
3		*	Order Materials	7 days	Sun 10/22/17	Sun 10/29/17											
4		*	Build Subscale Rocket	16 days	Fri 11/3/17	Fri 11/24/17			-	3							
5		*	Complete Checklists	24 days	Fri 11/10/17	Wed 12/13/1			•		3						
6		*	Ground test Subscale						L								
7		*	Flight Test Subscale	7 days	Sat 12/2/17	Sat 12/9/17			L		3						
8		*	Post- Flight analysis Subscale	7 days	Sat 12/9/17	Sat 12/16/17											
9		*	Design Modifications - Subscale Results	7 days	Sun 12/10/17	Sun 12/17/17			L								
10		*							L								
11		*							L								
12		*															
13		*	Full scale				1										

ID	-	Task	Task Name	Duration	Start	Finish	ep 24, '1	17		Nov 19,	'17	Jan 1	4, '18	Ma	ar 11, '18
	0	Mode					F		Т	S	W	S	T	M	F
14		×	fullscale Rocksim Design	7 days	Sun 12/10/17	Sun 12/17/17									
15		*	Order Materials	1 day	Sun 12/10/17	Sun 12/10/17				I					
16		*	Build fullscale Rocket	17 days	Sat 12/23/17	Sat 1/13/18					E.	2			
17		*	Complete Checklists	1 day	Sat 1/20/18	Sat 1/20/18						I			
18		*	Ground test Subscale	1 day	Fri 1/19/18	Fri 1/19/18						I			
19		*	Flight Test fullscale	0 days	Fri 1/26/18	Fri 1/26/18						٠	1/26		
20		*	Post- Flight analysis fullscale	7 days	Fri 2/2/18	Mon 2/12/18									
21		*	Design Modifications - fullscale Results	7 days	Fri 2/2/18	Mon 2/12/18							C 3		
22		ß													
23		*	PDR												
24		*	Web Site URL sent to project office		Mon 10/30/17				-						
25		*	report draft 1	1 day	Fri 10/13/17	Fri 10/13/17	T								
26		*	slides draft 1	1 day	Fri 10/13/17	Fri 10/13/17	Ŧ								

ID	1	Task	Task Name	Duration	Start	Finish	ep 24	ep 24, '17		Nov 19,	'17	Jan 14, '18	Mar 11, '18
	0	Mode	a 101				F	8	T	S	W	S T	M F
27		*	report draft 2	1 day	Fri 10/20/17	Fri 10/20/17		I					
28		*	slides draft 2	1 day	Fri 10/20/17	Fri 10/20/17		I					
29		*	presentation dry run	1 day	Fri 11/10/17	Fri 11/10/17			I				
30		*	reports, presentation and flysheet to web	1 day	Fri 11/3/17	Fri 11/3/17			Т.				
31		*	video teleconference	18 days	Mon 11/6/17	Wed 11/29/1	7		-	3			
32		3											
33		1 77	CDR										
34		*	Q&A	1 day	Wed 12/6/17	Wed 12/6/17				I			
35		*	report draft 1	1 day	Mon 12/25/1	Mon 12/25/1	7				I		
36		*	slides draft 1	1 day	Fri 12/29/17	Fri 12/29/17					I		
37		*	report draft 2	1 day	Thu 1/4/18	Thu 1/4/18					3	L	
38		*	slides draft 2	1 day	Thu 1/4/18	Thu 1/4/18					3	E .	
39		*	presentation dry run	1 day	Fri 1/19/18	Fri 1/19/18						I	

	St. Monica – 2018 – PDR – Report – Document Submission.pdf	Version 2.1	Page 56 of 61 3-Nov-2017
--	---	-------------	-----------------------------

ID	0	Task Mode	Task Name	Duration	Start	Finish	ep 24, '17 F	Nov 19, '17	Jan 14, '18	Mar 11, '18
40		*	reports, presentation and flysheet to web	1 day	Fri 1/12/18	Fri 1/12/18			I	
41		*	video teleconference		TBD					
42	1	3								
43		*	FRR				8			
44		*	report draft 1	1 day	Wed 2/7/18	Wed 2/7/18			I	
45		*	slides draft 1	1 day	Wed 2/7/18	Wed 2/7/18			I	
46		*	report draft 2	1 day	Fri 2/23/18	Fri 2/23/18			2	E
47		*	slides draft 2	1 day	Fri 2/23/18	Fri 2/23/18			ž	E
48		*	presentation dry run	1 day	Mon 3/12/18	Mon 3/12/18				I
49		*	reports, presentation and flysheet to web	1 day	Mon 3/5/18	Mon 3/5/18				I
50		1	video teleconference		TBD					
51		3								
52		1					-			
53		*								

D		Task	Task Name	Duration	Start	Finish	ep 24,	'17		Nov 19	9, '17		Ja	n 14, '	18		Mar	11, '18
	0	Mode					F		T	S		W	S		Т	٨	1	F
54		27							1									
	-																	
55	-	2.2																
56	_	22																
57	_	27																
58		29																
59		12																
60		*																
61		3																
62		3																
63		*	Payload															
64		*	Finalize design for payload	156 days	Fri 10/27/17	Fri 1/12/18		E					3					
65		*	Determine payload success criteria	1 day	Thu 11/2/17	Thu 11/2/17		3	r									
66		*	Determine design alternatives	11 days	Wed 10/11/17	Wed 10/25/17	-											
67		*	Conclude on leading design	1 day	Thu 11/2/17	Thu 11/2/17		3	r									
68		*	order parts for payload prototype	1 day	Thu 11/9/17	Thu 11/9/17			I									
69		*	Build payload prototype	1 day	Thu 11/16/17	Thu 11/16/17	8		3	5								

	St. Monica – 2018 – PDR – Report – Document Submission.pdf	Version 2.1	Page 57 of 61 3-Nov-2017
--	---	-------------	-----------------------------

ID	0	Task Mode	Task Name	Duration	Start	Finish	ep 24, '17 F	т	Nov 19 S	, '17 W	Jan 14, '18 S	T I	Mar	11, '18 F
70		*	Test payload prototype for temperature	20 days	Thu 11/23/17	Wed 12/20/17			C		t 9694 til	and the second		
71		*	Determine maximum impact speed of payload	6 days	Fri 12/8/17	Fri 12/15/17			1					
72		*	Determine arduino components and functionality	1 day	Fri 11/10/17	Fri 11/10/17		I						
73		*	Program arduino to control temperature	16 days	Fri 11/17/17	Fri 12/8/17			c 3	E.				
74		*	Integrate arduino with hardware	6 days	Fri 12/8/17	Fri 12/15/17			l					
75		*	Determine and Adjust Design final adjustments	1 day	Fri 12/22/17	Fri 12/22/17				I				
76		*	Build payload	6 days	Fri 12/22/17	Fri 12/29/17								
77		*	Document payload funcionality, design and alternatives	1 day	Fri 1/5/18	Fri 1/5/18				2				
78		*	build habitat	1 day	Sat 12/22/18	Sat 12/22/18								
79		*	buy shrimp	1 day	Fri 11/3/17	Fri 11/3/17		I						
80		3												
81		B												

D	100	Task	Task Name	Duration	Start	Finish	ep 24,	'17		Nov 19	'17	Ja	n 14,	'18	P	Mar 11	1, '18
	0	Mode					F		Т	S	W	S		т	M		F
82		3															
83		*	Educational Outreach														
84		*	St Marys school in Ridgefield CT	8 days	Wed 11/1/17	Fri 11/10/17											
85		**															
86		*	Community Outreach														
87		*	Ridgefield CT fall walk														
88		3															
89		*	Fundraising														
90		*	PRIME														
91	t	*	NY Space grant														
92		*	CT Space grant														
93		*	Homeschool group donations														

Table 21 – Timeline

C. Educational Engagement

This year for the educational outreach program, we expect to have a total of 300 people at

our programs. Our program will have the following elements:

- 1. Rockets will be on hand so children can pack and unpack the rocket.
- 2. We will discuss basic model rocketry.
- 3. We will have hands on STEM projects for the children to participate.

We have had a few inquiries about schools that can host the Rocket Club. Our choices are:

- 1. Saint Mary school in Ridgefield, CT. There are 142 students K-8 for this school. We do not have a specific date, but it has been approved.
- 2. Regina Caeli in Wilton, CT. They are a K-12 school and have 80 students.
- 3. Padre Poi in Ridgefield, CT. They are K-12 and have 40 students.
- 4. Mt Kiso Elementary School in Mt Kiso, NY. They are K-5 school and has 500 students. The administration is interested, but has not given us a date.

D. Community Outreach

Our team has been together for several years, from participating in T.A.R.C. for five years now

to currently participating in the 2018 NASA Student Launch.

On October 26, 2017, the team set up a booth at the Halloween Walk in Ridgefield, CT where more than 4,000 children ages pre-school to high school participate in the walk. The booth was constantly active, and the children enjoyed the hands-on science experiments. Over 500 flyers were handed out explaining the science experiments that also had our web site and Go Fund me page listed.

Additionally, the local high school, Ridgefield High School has inquired about TARC, and we have agreed if they are interested to help set up a program at their location.

We have a web site, Facebook page, Instagram, Twitter and Go Fund Me pages that all tell about the NASA Student Launch Initiative.

VII. Appendix

A. Table of Figures

Figure 1-Fins Sou	rce: Handbook of Model Rocketry, 7th Edition Model Rocketry	
Figure 2 - Leading I	Design	11
Figure 3 - Thrust Cu	rve Comparison	16
Figure 4 – Redundar	nt Flight Computer Diagram	
Figure 5 – Iris Ultra	Compact Parachutes – Fruity Chutes	
Figure 6 – RocketM	an Ballistic Mach II Drogue	20
Figure 7 - Hazard So	cale	
Figure 8 - Project Ri	sks	
Figure 9 – Sea Mon	cey	
Figure 10 - Heat Tes	t	30
Figure 11 - The Coo	ling System	
Figure 12: Payload S	System Diagram	

B. Table of Tables

Table 1-Air Frame Materials	7
Table 2 - Fin Material and Shape Alternatives	9
Table 3 - Full Scale Rocket and Payload Component Listing	14
Table 4 - Motor Alternatives	15
Table 5 - Motor Simulations	16
Table 6 - Electronics Alternatives.	17
Table 7 - Parachute Alternatives	19
Table 8 - Harness Alternatives	20
Table 9 - Personal Safety Hazards	.24
Table 10 - Shrimp Alternatives	28
Table 11 - General Requirements	.37

Table 12 - Design Requirements	. 42
Table 13 - Recovery Requirements	. 45
Table 14 - Payload Requirements	. 46
Table 15 - Safety Requirements	. 49
Table 16 - Budget Summary	. 50
Table 17 - Budget Huntsville Trip	. 51
Table 18 - Budget Full Scale Rocket and Payload	. 53
Table 19 Budget Shipping and Handling Costs	. 53
Table 20 - Fundraising	. 55
Table 21 – Timeline	. 58

